Speedup via batching

• A ciphertext encrypts an array of values
 – E.g., each is a bit or a small integer
• Array size determined by other parameters
 – E.g., 378, 600, 682, 720, 1285, ...
• Homomorphic operations include:
 – Element-wise addition/subtraction, multiplication
 – Addition/subtraction, multiplication by constants
 – Cyclic/non-cyclic shifts
 – Also $\text{SELECT}(A_1, A_2, \text{pattern})$
 $= \text{pattern} \times A_1 + (1-\text{pattern}) \times A_2$
Performance

• In Jan-2012 we had an implementation that evaluated the AES-128 circuit in 36 hours
 – Note: AES does NOT support homomorphism, we just used the circuit that computes AES as an example

• With parallelism, we can encrypt ~20 blocks in one operation
 – vs. 20x200 cycles (approx. 2ms) for doing the same thing in the clear (in software)
 – “Only” 10 orders of magnitude slower
Recent Performance (Dec 2012)

• Security parameter=80, circuit width=4 arrays

<table>
<thead>
<tr>
<th>Circuit “depth”</th>
<th>Array size</th>
<th>Time (hrs:min:sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>224</td>
<td>0:00:38</td>
</tr>
<tr>
<td>14</td>
<td>480</td>
<td>0:02:49</td>
</tr>
<tr>
<td>35</td>
<td>512</td>
<td>0:19:05</td>
</tr>
<tr>
<td>(*)</td>
<td>7</td>
<td>720</td>
</tr>
<tr>
<td>84</td>
<td>2048</td>
<td>5:24:47</td>
</tr>
</tbody>
</table>

(*) maybe similar work to homomorphic AES
 – If true, ~12x speedup on our previous implementation